
Equivalences between GIT quotients of

Landau-Ginzburg B-models

Ed Segal

November 24, 2010

Abstract

We define the category of B-branes in a (not necessarily affine) Landau-
Ginzburg B-model, incorporating the notion of R-charge. Our definition
is a direct generalization of the category of perfect complexes. We then
consider pairs of Landau-Ginzburg B-models that arise as different GIT
quotients of a vector space by a one-dimensional torus, and show that for
each such pair the two categories of B-branes are quasi-equivalent. In fact
we produce a whole set of quasi-equivalences indexed by the integers, and
show that the resulting auto-equivalences are all spherical twists.
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1 Introduction

The starting point for this paper is the celebrated result of Orlov [13] that the
derived category of a Calabi-Yau hypersurface Y in projective space is equivalent
to the triangulated category of graded matrix factorizations for the homogeneous
polynomial f defining Y . In physicists’ language this is the statement that the
categories of topological B-branes are the same in the sigma model with target
Y and in the Landau-Ginzburg model with superpotential f . This is just part
of a much deeper conjecture which goes back to Witten [17] (based on earlier
observations by Vafa and others) and which states that the conformal field
theories associated to these two models are different limit points in the same
moduli space, the so-called Stringy Kähler Moduli Space (SKMS). The B-twist
of a conformal field theory is expected to be independent of your position in
the SKMS, so it follows that the B-twisted theories of each model should be
equivalent and in particular that their B-brane categories are the same.

The basics of Witten’s idea are easy to understand, even for a mathematician.
A Landau-Ginzburg model is a Kähler manifold X with a holomorphic function
W called the superpotential. From such a thing one can write down a standard
supersymmetric Lagrangian, analogous to the Lagrangian in classical mechan-
ics coming from a Riemannian manifold equipped with a real-valued potential
function. We consider the LG model

X = Cn+1
x1,...,xn,p W = f(x)p

where f is a homogeneous degree n polynomial in the xi’s. Now we ‘gauge’ this
theory, which means we try and divide by the C∗ symmetry under which each xi
has weight 1 and p has weight −n. The resulting theory should be the same, at
least in some limit, as the theory coming from the quotient LG model. However
we should take the quotient carefully, which means take a GIT quotient, and
here we have two choices. One is the total space of the canonical bundle on
Pn−1

X+ = KPn−1

and the other is the affine orbifold

X− = [Cn/Zn]

The function W descends to either of these, so they are both LG models. Phys-
ically, there is a parameter (the complexified Fayet-Iliopoulos parameter) in the
Lagrangian of the gauged theory, and the theories on X+ and X− are expected
to appear at two different limits of this parameter.

The important thing about a LG model is the set of critical points for the
function W . On X+ this will be the hypersurface Y ⊂ Pn−1. If we assume
that this is smooth, then locally around Y the function W is just quadratic
in the normal directions, physically these directions are then ‘massive modes’
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and can be ‘integrated out’ in the low-energy theory. What this means is that
we should expect the theory coming from (X+, fp) to look essentially like a
theory based just on Y , with no superpotential. We conclude that the theory
on Y is connected, in the moduli space of theories, to the theory on the orbifold
[Cn/Zn] with superpotential W . This is called the Calabi-Yau/Landau-Ginzburg
correspondence.

On the level of conformal field theories, this story is beyond the reach of current
mathematical technology. However, all the spaces here are Calabi-Yau, which
means the theories admit ‘B-twists’ which are topological field theories (more
precisely they are Topological Conformal Field Theories/Cohomological Field
Theories) and these are much more tractable. And as mentioned above, the
B-twisted theories should be independent of the FI parameter, and so the result
to prove is that the B-model (the B-twisted TCFT) arising from Y is the same
as the B-model arising from the Landau-Ginzburg model (X−, fp).

The open sector of a B-model is the category of B-branes, these are a type of
boundary condition for the CFT. This should be a Calabi-Yau dg-category. For
a LG model with W = 0, the category of B-branes is (a dg-enhancement of)
the bounded derived category of coherent sheaves. When W 6= 0 we need a
generalization of this, the idea (due to Kontsevich) is to use objects that are
like chain-complexes of sheaves, except that we now have d2 = W instead of
d2 = 0. We define this category, denoted Br(X,W ) for a LG model (X,W ), in
Section 2. In particular, the homotopy category of Br(X−, fp) is the category
of matrix factorizations of f on X− = [Cn/Zn], and the homotopy category of
(Y, 0) is Db(Y ).

Orlov’s result is thus the statement that H0(Br(Y, 0)) = H0(Br(X−, fp)), i.e.
the homotopy categories of the open sectors of the two B-models are the same.
In fact this goes a long way to proving that the whole of the B-models are the
same, to get the full statement one would have to show that the open sectors are
equivalent as Calabi-Yau dg-categories, the closed sectors should then follow by
Costello’s theorem [3]. However this is not the aim of the current paper. Rather,
we wanted to try to re-prove Orlov’s result following more closely the ideas in
Witten’s construction, which does not appear in Orlov’s proof. In particular we
wanted to see the equivalence as the composition of two equivalences:

(X−, fp) ←→ (X+, fp) ←→ Y

This both clarifies the result and suggests how to generalise it. For the first
equivalence, we assume that the fundamental relationship between X− and X+

is that they are birational, being related by a change of GIT quotient is just a
special case of this. Hence we conjecture (Conjecture 2.15) that the B-models
associated to any two birational Calabi-Yau LG models are equivalent (to be
more precise, we just conjecture that their open sectors are equivalent as dg-
categories). This conjecture will be obvious to experts, it is a generalization of a
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theorem of Bridgeland [2] and lies in the same circle of ideas as Ruan’s Crepant
Resolution conjecture [14].

Unfortunately we do not get as far as addressing the second equivalence in this
paper. We’ll just remark that although it looks mysterious, it is just a global
version of a fairly classical result by Knörrer [9], and a closely related result is
proved by Orlov [12].

What we actually manage to prove in this paper is a slight generalisation of the
first equivalence, and so a small step towards our general conjecture. We show
(Theorem 3.3) that if X+ and X− are two different GIT quotients of a vector
space V by C∗, and W is an invariant polynomial on V , then

Br(X+,W ) ' Br(X−,W )

are equivalent dg-categories. Our proof borrows heavily from the work of Hori,
Herbst and Page [5], in which they give a detailed physical argument for a gen-
eralisation of Orlov’s result. Their key idea is a grade restriction rule. Their
reasoning involves A-branes and is mathematically rather mysterious, however
the rule itself will be instantly familiar to anyone who knows Beilinson’s Theo-
rem [1]. Our improvement on their result, other than making it mathematically
rigourous, is that they work only with the objects of the B-brane category
whereas we include the morphisms as well (the massless open strings).

We want to explain one last aspect of the physics picture. The SKMS (the space
in which the FI parameters live) can be explicitly described for our examples:
it is a cylinder with one puncture, and the two GIT quotient LG models live at
either end of the cylinder. The category of B-branes is the same for all points
in this space, however we cannot trivialise it globally, i.e. there is monodromy.
Therefore to get an equivalence between the B-brane categories of X+ and X−
we must pick a path between the two ends of the cylinder. Up to homotopy
there are Z such paths, so we should find Z such equivalences. This is what
we, and Orlov, find. By composing equivalences we get autoequivalences of the
B-brane category at either end, this is the monodromy around the puncture.
The puncture is the limit where the mass of a particular brane goes to zero, and
the monodromy should be a Seidel-Thomas spherical twist around this brane.
There is also monodromy around each end of the cylinder, this should just be
given by tensoring with the O(1) line-bundle.

Now we can explain the layout of the paper.

In Section 1.1 we give a sketch of our method for the special case that W = 0.
This means we don’t have to worry about LG models, we just deal with the
more familiar case of derived categories of coherent sheaves. We show that we
can construct Z many derived equivalences between X+ and X−, and that the
resulting autoequivalences are spherical twists.
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In Section 2 we explain properly what a LG B-model is, and what the category
of B-branes is.

In Section 3 we describe the class of examples we will consider. These are pairs
of LG B-models (X+,W ) and (X−,W ) that are different GIT quotients of a
vector space by C∗.

In Section 3.1 we prove our main result, that there are Z many quasi-equivalences
between the categories of B-branes on (X+,W ) and (X−,W ).

In Section 3.2 we describe the resulting auto-quasi-equivalences of the category
of B-branes on (X+,W ). We show (more-or-less) that they are spherical twists.

The technology of LG B-models is in its infancy, so many of the arguments of
the last two sections are rather messy and ad-hoc. In particular the ‘more-or-
less’ of the previous paragraph is because we do not have a proper theory of
Fourier-Mukai transforms. We apologise to the reader for this unsatisfactory
state-of-affairs, and hope that later treatments will clean these results up a bit.

Acknowledgements. I’d like to thank Richard Thomas for helpful suggestions,
Manfred Herbst for patiently explaining [5] to me, and the geometry department
at Imperial College for sitting through some lectures on this material when it
was in preliminary form.

Some results closely related to those of this paper (although using the ‘derived
category of singularities’ description of the category of B-branes) have been been
found independently by [7] and [8, Section 7].

1.1 A Sketch Proof for W = 0

As we will see in Section 2, a special case of the category of B-branes in a
Landau-Ginzburg B-model is the category Perf (X) of perfect complexes on a
smooth space X, which is a dg-model for the derived category Db(X). We
thought it would be helpful to explain the proof of our results in this special
case, as Db(X) is probably more familiar than Br(X,W ). Also the proof in this
case is quite simple and still contains the important points for the more general
case, the hard work in generalizing is mostly technicalities.

For this sketch, we’ll use the example of the standard three-fold flop. This is
of course well understood and we will say nothing particularly original, but we
will indicate afterwards how to generalise.

Let V = C4 with co-ordinates x1, x2, y1, y2, and let C∗ act on V with weight
1 on each xi and weight −1 on each yi. There are two possible GIT quotients
X+ and X−, depending on whether we choose a positive or negative character
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of C∗. Both are isomorphic to the total space of the bundle O(−1)⊕2 over P1.

Both are open substacks of the Artin quotient stack

X = [V/C∗]

given by the semi-stable locus for either character. Let

ι± : X± ↪→ X

denote the inclusions. This stacky point of view makes it clear that there are
(exact) restriction functors

ι∗± : Db(X )→ Db(X±)

By Db(X ) we mean the derived category of the category of C∗-equivariant
sheaves on V . This contains the obvious equivariant line-bundles O(i) asso-
ciated to the characters of C∗.

The unstable locus for the negative character is the set {y1 = y2 = 0} ⊂ V .
Consider the Koszul resolution of the associated sky-scraper sheaf:

K− = O(2)
(y2,−y1)−→ O(1)⊕2 (y1,y2)−→ O

Then ι−K− is exact, it is the pull-up of the Euler sequence from P1
y1:y2 . On

the other hand ι+K− is a resolution of the sky scraper sheaf OP1
x1:x2

along the

zero section. Similar comments apply for the Koszul resolution K+ of the set
{x1 = x2 = 0}.

Let
Gt ⊂ Db(X )

be the triangulated subcategory generated by the line bundles O(t) and O(t+1).
This is the grade restriction rule of [5], we are restricting to characters lying in
the ‘window’ [t, t+ 1].

Claim 1.1. For any t ∈ Z, both ι∗+ and ι∗− restrict to give equivalences

Db(X+)
∼←− Gt

∼−→ Db(X−)

To see that these functors are fully-faithful it suffices to check what they do to
the maps between the generating line-bundles, so we just need to check that

Ext•X (O(t+ k),O(t+ l)) = Ext•X±(O(t+ k),O(t+ l))

for k, l ∈ [0, 1], i.e.
H•X (O(i)) = H•X±(O(i))
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for i ∈ [−1, 1], and this is easily verified. To see that they are essentially
surjective we need to know that the the two given line bundles generate Db(X±).
This is essentially a corollary of Beilinson’s Theorem [1]. One way to see it is to
first observe that the set {O(i), i ∈ Z} generates Db(X±) because X± is quasi-
projective, then use twists of the exact sequence ι±K± repeatedly to resolve
any O(i) by a complex involving only O(t) and O(t+ 1).

So for any t ∈ Z we have a derived equivalence

Φt : Db(X+)
∼−→ Db(X−)

passing through Gt. Composing these, we get auto-equivalences

Φ−1
t+1Φt : Db(X+)

∼−→ Db(X+)

To see what these do, we only need to check them on the generating set of line-
bundles {O(t),O(t+ 1)}. Applying Φt to this set is easy, it just sends them to
the same line-bundles on X−.1 To apply Φ−1

t+1 however, we first have to resolve
O(t) in terms of O(t + 1) and O(t + 2). We do this using the exact sequence
ι−K−(t). The result is that Φ−1

t+1Φt sends

O(t) 7→ [O(t+ 2)
(−y2,y1)−→ O(t+ 1)⊕2]

O(t+ 1) 7→ O(t+ 1)

Claim 1.2. Φ−1
t+1Φt is an inverse spherical twist around OP1

x1:x2
(t).

A spherical twist is an autoequivalence discovered by [15] associated to any
spherical object in the derived category, i.e. an object S such that

Ext(S, S) = C⊕ C[−n]

for some n (i.e. the homology of the n-sphere). It sends any object E to the
cone on the evaluation map

[RHom(S, E)⊗ S −→ E ]

The inverse twist sends E to the cone on the dual evaluation map

[E −→ RHom(E , S)∨ ⊗ S]

The object OP1
x1:x2

(t) ' ι+K−(t) is spherical, and the inverse twist around it

sends O(t+ 1) to itself and O(t) to the cone

[O(t) −→ ι+K−(t)] ' [O(t+ 2)
(−y2,y1)−→ O(t+ 1)⊕2]

1The easiest sign convention is to keep y1 and y2 as degree -1 on both sides, i.e. it’s the
O(−1) bundle on P1

y1:y2
that has global sections. Otherwise Φt sends O(t) to O(−t).
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which agrees with Φ−1
t+1Φt. To complete the proof of the claim we would just

need to check that the two functors also agree on the Hom-sets between O(t)
and O(t+ 1).

Now instead let V = Cp+q with co-ordinates x1, ..., xp, y1, ..., yq. Let C∗ act
linearly on V with positive weights on each xi and negative weights on each
yi. The two GIT quotients X+ and X− are both the total spaces of orbi-vector
bundles over weighted projective spaces.

We must assume the Calabi-Yau condition that C∗ acts through SL(V ). Let d
be the sum of the positive weights, so the sum of the negative weights is −d.
The above argument goes through word-for-word, where now

Gt = 〈O(t), ...,O(t+ d− 1)〉

2 Landau-Ginzburg B-models

A Landau-Ginzburg model is a Kähler manifold X equipped with a holomorphic
function W . We are only interested in the B-model on (X,W ), and this doesn’t
need the metric, just the complex structure. Also we want to work in the
algebraic world, so for us X will be a smooth scheme (or stack) over C.

When W = 0, it is a standard slogan that the category of B-branes is the
derived category Db(X) of coherent sheaves on X. However the category of
B-branes should really be a dg-category, whose homotopy category is Db(X)
(for background on dg-categories, we recommend [16]). A good model is given
by Perf (X), the category of perfect complexes. The objects of Perf (X) are
bounded complexes of finite-rank vector bundles, and the morphisms are given
by

Hom(E•, F •) = Γ(Hom(E•, F •)⊗A0,•)

(this is what we might call the ‘Dolbeaut’ version of Perf (X), other versions
are possible as we will discuss below). The differential here is a sum of the
Dolbeaut differential ∂̄ and the differential on Hom(E•, F •), which itself is the
commutator with the differentials on E• and F •. The homology of this complex
is

Ext•(E•, F •) = HomDb(X)(E
•, F •)

Futhermore since X is smooth every object in Db(X) is quasi-isomorphic to a
complex in Perf (X), so H0(Perf (X) = Db(X)) as required.

We need to generalise this for W 6= 0. Kontsevich’s idea was to modify the
definition of a chain-complex, replacing d2 = 0 with d2 = W . This doesn’t
make sense on a Z-graded complex, so the usual procedure (at least in the
mathematics literature) is to work instead with Z2-graded complexes. However
there is another possibility, standard in the physics literature, which is to replace
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the ‘homological’ grading with the notion of R-charge (strictly speaking, vector
R-charge). This is a geometric action of C∗ on X, under which W must have
weight 2. Then we can define a B-brane to be a C∗-equivariant vector bundle E,
with an endormorphism d of R-charge 1, and the condition d2 = W1E makes
sense. If the C∗ action is trivial then we are forced to take W = 0, and we
recover the definition of a perfect complex. Also, the definition of the morphism
chain-complexes in Perf (X) adapts easily, as we shall see.

Definition 2.1. A Landau-Ginzburg B-model is the following data:

• A smooth n-dimensional scheme (or stack) X over C.

• A choice of function W ∈ OX (the ‘superpotential’).

• An action of C∗ on X (the ‘vector R-charge’).

such that

1. W has weight (‘R-charge’) equal to 2.

2. −1 ∈ C∗ acts trivially.

From now on we’ll call the C∗ acting in this definition C∗R to distinguish it from
other C∗ actions that will appear later.

Remark 2.2. In physics terms, Axiom 2 follows from the fact that the axial
R-charge symmetry is acting trivially. It implies that the sheaf of functions
OX is supercommutative under the C∗R grading. We could relax it, but keep
supercommutativity, by allowing X to be a superspace.

Definition 2.3. A B-brane on a Landau-Ginzburg B-model (X,W ) is a finite-
rank vector bundle E, equivariant with respect to C∗R, equipped with an endo-
morphism dE of R-charge 1 such that d2

E = W · 1E .

If we wanted to be more pretentious we could say that X is a space endowed
with a sheaf of curved algebras (W is the curvature) and that a B-brane is a
locally free sheaf of curved dg-modules over X.

We can shift the R-charge on a B-brane E by tensoring with a line bundle
associated to a character of C∗R. We denote these shifts by E[n] for n ∈ Z. This
agrees with the homological shift functor in the following special case:

Example 2.4. Let W = 0 and C∗R act trivally. Then a B-brane is just a bounded
complex of vector bundles.
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Note that since −1 ∈ C∗R acts trivially every B-brane splits as a direct sum

E = Eev ⊕ Eod

of its Z2-eigen-bundles, and dE exchanges these sub-bundles. There is a weaker
definition of Landau-Ginzburg B-model where we keep only the trivial action
of Z2 ⊂ C∗R, thus only this Z2-grading remains. We shall make no use of this
weaker definition, except for the following example.

Example 2.5. Let X = Cn and W be any polynomial. This defines a LG B-
model in the weak (Z2-graded) sense. Then for a B-brane (E, dE) both Eev and
Eod must be trivial bundles, so dE is given by a matrix

dE =

(
0 d0

E

d1
E 0

)
whose square is W1. This is a called a matrix factorization of W .

We can’t in general add R-charge to this example. But we can if we orbifold it,
as follows.

Example 2.6. Let X = [Cnx1,...,xn
× C∗p / C∗G], where C∗G (the gauge group) acts

with weight 1 on each xi and weight −k on p. This is equivalent as a stack to
[Cn/Zk]. Let C∗R act with weight 0 on each xi and weight 2 on p. If we pick
a superpotential W = f(x)p where f(x) is a homogeneous degree k polynomial
in the xi’s, then this defines a LG B-model (for k = n it is the orbifold phase of
the Witten construction described in the introduction). Every C∗R-equivariant
vector bundle on X is the direct sum of C∗R-equivariant line-bundles, these are
given by the lattice

Z2/(−k, 2)

This bijects with the subset Z× [0, 1] ⊂ Z2. This means that we can consider a
B-brane on (X,W ) to be given by a pair (E0, E1) of graded free modules over
the ring C[x1, ..., xn] where each xi has degree 1, and graded maps

d0
E : E0 → E1, d1

E : E1 → E0

with d0
Ed

1
E = d1

Ed
0
E = f . This is called a graded matrix factorization.

Now we want to define the morphisms between two B-branes. We will precisely
mimic the construction of Perf , by first defining a homomorphism bundle and
then taking derived global sections of it.

Recall that a B-brane on the LG B-model (X, 0) is a C∗R-equivariant bundle E
on X equipped with an endomorphism dE of R-charge 1 whose square is zero.
Let dgRVect(X) be the category whose objects are B-branes on (X, 0) and
whose morphisms are all morphisms of vector bundles. This is a dg-category,
and when the C∗R action on X is trivial it is just the category dgVect(X) of
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complexes of vector bundles on X. It is also a monoidal category, since we can
tensor equivariant bundle and their endomorphisms in the usual way.

Now let (X,W ) be any LG B-model, and let (E, dE), (F, dF ) be two B-branes
on (X,W ). We have a C∗R-equivariant vector bundle

Hom(E,F ) = E∨ ⊗ F

and this carries an endomorphism

dE,F = 1∨E ⊗ dF − d∨E ⊗ 1F

of R-charge 1. One can check that

d2
E,F = 0

(the two copies of W that appear cancel each other). This means that the pair
(Hom(E,F ), dE,F ) is an object of dgRVect(X). Furthermore, given a third
B-brane (G, dG), we have composition maps

Hom(E,F )⊗Hom(F,G)→ Hom(E,G)

and these are closed and of degree zero.

Definition 2.7. Given an LG-model (X,W ) we define a category Br(X,W )
enriched over the category dgRVect(X). The objects of Br(X,W ) are the B-
branes on (X,W ), and the morphisms between two branes E and F are given
by

(Hom(E,F ), dE,F )

We need to fix a monoidal functor RΓ : Vect(X)C
∗
R → dgVectC

∗
R that sends

a C∗R-equivariant vector bundle to a bounded C∗R-equivariant chain-complex of
vector spaces that computes its derived global sections. Since we are working
with smooth spaces over C we will use Dolbeaut resolutions, i.e. we define

RΓ(E) = (Γ(E ⊗A0,•
X ), ∂̄)

but we could also use other models such as Čech resolutions with respect to
some C∗R-invariant open cover.

Now Hom(E,F ) is an object in dgRVect(X). This means that

RΓ(Hom(E,F )) = Γ(Hom(E,F )⊗A0,•
X )

is a bi-complex, graded by R-charge and by Dolbeaut degree, with differential

dE,F + ∂̄

As usual we may collapse this bi-complex to a complex. If we apply this to all
pairs of branes simultaneously we get the following:
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Definition 2.8. Given an LG-model (X,W ) we define the dg-category of B-
branes to be

Br(X,W ) := RΓ(Br(X,W ))

The monoidalness of RΓ ensures that this is indeed a category.

Example 2.9. Let W = 0 and C∗R act trivially on X. Then Br(X, 0) = Perf (X),
the category of perfect complexes. Since X is smooth the homotopy category
of this is

H0(Br(X, 0)) = Db(X)

Example 2.10. Let X = [Cn/Zn] as in example 2.6. Then the functor Γ means
‘take Zn-invariants’, and this is exact, so we may let RΓX = ΓX . The homotopy
category of Br(X,W ) is the category of graded B-branes DGrB(W ) defined by
Orlov [13].

Remark 2.11. Br(X,W ) should only depend on a (Zariski) neighbourhood of
the critical locus of W . This has been proved (without R-charge and on the
level of homotopy categories) by Orlov [11].

Remark 2.12. As far as we are aware this definition is new in the mathematics
literature, but it is almost classical in the physics literature, see e.g. [6].

Remark 2.13. We could make the definition of a B-brane more general by al-
lowing the endomorphism dE to be derived, i.e.

dE ∈ Γ(End(E)⊗A0,•
X )

with R-charge plus Dolbeaut degree equal to 2. Similarly we could generalize
the definition of LG B-model by allowing W to be a closed element of A0,•

X .
The advantage of this more general definition of B-brane is that the resulting
category contains mapping cones, i.e. it is pre-triangulated. However notice
that in Example 2.9 above Perf (X) is already pre-triangulated, this leads us to
suspect that at least when W ∈ OX our more restricted category of B-branes is
in fact pre-triangulated as well. When X is affine this is obvious.

Remark 2.14. Since the Hom sets are actually bi-complexes, and the Dolbeaut
grading is bounded, we have a spectral sequence converging to the homology of
RΓ(Hom(E,F )) whose first page is

(H•(Hom(E,F )), dE,F )

A map f : (X,W ) → (X ′,W ′) of LG B-models is just a map from X to X ′

commuting with the R-charges and such that f∗W ′ = W . Assuming that the
derived global sections functors RΓX and RΓX′ are chosen compatibly we get
a dg-functor

f∗ : Br(X ′,W ′)→ Br(X,W )

Similarly a birational map between (X,W ) and (X ′,W ′) is a birational map
from X to X ′ that commutes with R-charge and sends W ′ to W .
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Conjecture 2.15. Let (X,W ) and (X ′,W ′) be birational LG B-models, and
assume that X and X ′ are Calabi-Yau. Then there is a quasi-equivalence

Br(X,W ) ' Br(X ′,W ′)

In the next section we prove a special case of this conjecture.

As was explained in the introduction, this is a conservative version of the real
conjecture, which is that the B-models associated to (X,W ) and (X ′,W ′) are
equivalent. We state this version since it is not yet proved that the B-model
exists.

13



3 Quotients of a vector space by C∗

Take a vector space V , and equip it with a linear action of C∗, which we’ll
denote by C∗G (the ‘gauge group’). We require that C∗G acts through SL(V ).
We have a stack quotient

X = [V/C∗G]

There are also two possible GIT quotients of V by C∗G associated to the char-
acters ±1 of C∗G. From the stacky point of view these are open sub-stacks

ι± : X± = [V ss± /C∗G] ↪→ X

consisting of the semi-stable loci given by either character. All of these spaces
are Calabi-Yau.

Now choose an action of C∗R on V that commutes with the gauge-group action.
Note that both GIT quotients are then preserved by C∗R. Let W be a function
on V that is invariant with respect to C∗G and has R-charge 2. Then we have
three Landau-Ginzburg B-models

(X+, ι
∗
+W )

ι+
↪→ (X ,W )

ι−←↩ (X−, ι
∗
−W ) (3.1)

From now on we’ll abuse notation and call both ι∗+W and ι∗−W just W .

Both GIT quotients are the total space of orbi-vector bundles over weighted
projective space. To see this, let

V = Vx ⊕ Vy ⊕ Vz
be the decomposition of V into eigenspaces with positive, negative and zero C∗G
weights. Then X+ projects down to PVx, and it is the total space of the vector
bundle associated to the graded vector space Vy ⊕Vz. Similarly X− is the total
space of Vx ⊕ Vz over PVy.

For our sign conventions, it is simplest if we agree that PVy is Proj of a negatively
graded ring, so that the O(−1) line bundle on PVy is the one that has global
sections. If we don’t adopt this then whenever we restrict to X− we have to flip
the signs of all line-bundles.

Let d be the sum of the positive eigenvalues of C∗G on V , since C∗G acts through
SL(V ) the sum of the negative eigenvalues is −d.

We’ll make repeated use of the following fairly classical fact:

Lemma 3.1. [4]

Hp
PVx

(O(k)) =

 (OVx
)k p = 0, k ≥ 0

(OVx
)d−k p = dimPVx, k ≤ −d

0 otherwise

14



where (OVx
)k is the polynomials on Vx with C∗G-degree k.

Corollary 3.2.
H0
X+

(O(k)) = (OV )k

for all k, and
Hp
X+

(O(k)) = 0

for p > 0 and k > −d.

Proof. By adjunction and affineness of the projection X+ → PVx, we have

Hp
X+

(O(k)) = Hp
PVx

(S•(Vy ⊕ Vz)∨ ⊗O(k))

3.1 Quasi-equivalences

In this section we will prove

Theorem 3.3. There is a natural set of quasi-equivalences

Br(X+,W ) ∼= Br(X−,W )

parametrised by Z.

The key idea of the proof of this Theorem comes from [5]. Using restriction
functors shown in 3.1, we will identify both Br(X+,W ) and Br(X−,W ) with
one of a set of full subcategories Gt ⊂ Br(X ,W ) parameterized by t ∈ Z.

Note that every vector bundle on X is a direct sum of the obvious line bundles
O(k), k ∈ Z. Let

Gt ⊂ Br(X ,W )

be the full subcategory consisting of B-branes (E, dE) where all the summands
of E come from the set

O(t), ...,O(t+ d− 1)

We will show that the functors

ι∗± : Br(X ,W )→ Br(X±,W )

become quasi-equivalences when restricted to any of the subcategories Gt, thus
proving Theorem 3.3.

Recall that a dg-functor between dg-categories is a quasi-equivalence if the in-
duced map on homotopy categories is an equivalence. This means that it must
be a quasi-isomorphism on Hom sets (quasi-fully-faithful) and surjective on
homotopy-equivalence classes of objects (quasi-essentially-surjective).
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Lemma 3.4. For any t ∈ Z, both functors

ι∗± : Gt → Br(X±,W )

are quasi-fully-faithful.

Proof. Obviously we need only show the proof for ι∗+. Let (E, dE) and (F, dF ) be
any two B-branes in Gt. We get corresponding B-branes ι∗+(E, dE) and ι∗+(F, dF )
on X+. Then

HomBr(X ,W )((E, dE), (F, dF )) = RΓX (Hom(E,F ))

and
HomBr(X+,W )(ι

∗
+(E, dE), ι∗+(F, dF )) = RΓX+

(ι∗+Hom(E,F ))

We wish to show that the map ι∗+ is a quasi-isomorphism between these two
complexes. Recall (Remark 2.14) that the homology of both complexes can be
computed by spectral sequences whose first pages are

(H•X (Hom(E,F )), dE,F ) and (H•X+
(ι∗+Hom(E,F )), ι∗+dE,F )

On X , taking global sections just means taking C∗G-invariants, which is exact,
so for any line-bundle O(k),

H•X (O(k)) = H0
X (O(k)) = (OV )k

and by Corollary 3.2 this is also true on X+ when k > −d. Since Hom(E,F ) is
a direct sum of line-bundles from the set

O(1− d), ...,O(d− 1)

the induced map

ι∗+ : H•X (Hom(E,F ))→ H•X+
(ι∗+Hom(E,F ))

is an isomorphism between the first pages of the two spectral sequences. Hence
ι∗+ is a quasi-isomorphism.

We will deduce quasi-essential-surjectivity from the following lemma, which is
essentially Beilinson’s Theorem [1].

Lemma 3.5. For any t ∈ Z, any C∗R-equivariant vector bundle E on X+ has
a finite C∗R-equivariant resolution by direct sums of shifts of line-bundles from
the set

O(t), ...,O(t+ d− 1)
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Proof. Recall that all vector bundles on X are direct sums of the character line
bundles. Since X+ is quasi-projective, E is a quotient of ι∗+V for some vector
bundle V on X , and we can choose this quotient to be C∗R-equivariant. Then
we have a map V → ι+∗E which is surjective on X+. Since X is smooth, the
kernel of this map has a finite resolution by vector bundles, which we again may
choose to be C∗R-equivariant. The restriction of this resolution to X+, together
with V , give a finite C∗R-equivariant resolution of E by direct sums of character
line-bundles. Thus it is sufficient to prove the lemma for the line-bundles O(k).

On PVx we have the Euler exact sequence

(∧•V ∨x ,¬x) = [0→ O(−d)→ ... → O → 0]

which resolves O(−d) in terms of O(−d + 1), ...,O, and the C∗R-action on Vx
means that it is C∗R-equivariant. Pull this up to X+. By repeatedly using twists
of this exact sequence we see that any line-bundle O(k) has a C∗R-equivariant
resolution by shifts of line bundles from the set O(t), ...,O(t+ d− 1).

Lemma 3.6. For any t, both functors

ι∗± : Gt → Br(X±,W )

are quasi-essentially-surjective.

Proof. Again we only show the proof for ι∗+. Let (E, dE) be a B-brane on
(X+,W ). By Lemma 3.5 we can C∗R-equivariantly resolve E by a complex

E−s ∂E→ ...
∂E→ E−1 ∂E→ E0

q
� E

where every term is a direct sum of shifts of line bundles O(k) with t ≤ k ≤
t+ d− 1. If we let

E =
⊕
p

E−p[p]

then ∂E is an endomorphism of E with R-charge 1. We’re going to show that
we can perturb ∂E to an endomorphism dE whose square is W1E , and that
the resulting B-brane (E , dE) is homotopic to (E, dE). To see that this proves
the lemma, let Ê be the vector bundle on X given by the same direct sum of
line-bundles as E . Then

H0
X+

(End(E)) = H0
X (End(Ê))

(see Corollary 3.2), so dE is the restriction of an endomorphism dÊ of Ê , so we

have a B-brane (Ê , dÊ) ∈ Gt that restricts to give (E , dE). So every B-brane is
homotopic to a B-brane lying in ι∗+Gt, which is the statement of the lemma.
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As well as the R-charge, we will need to keep track of the grading on E that
comes from it being a complex, let’s call this the homological grading. Of course
∂E also has homological grade 1.

Now consider the complex E and the bundle E as objects in the usual derived
category of sheaves on X+, which are quasi-isomorphic under the map q. The
line bundles making up E have no higher Ext groups between them (Cor. 3.2
again), so we have quasi-isomorphisms

H0(End(E)) ∼= RHomX+
(E , E) ∼= RHomX+

(E,E) (3.2)

Here we are using the homological grading on the LHS and the Dolbeaut grading
on the RHS, but the quasi-isomorphims are also equivariant with respect to R-
charge. This means we can find an element D0 ∈ H0(End(E)) which is closed
with respect to ∂E , has R-charge 1, and maps to the endomorphism dE of E,
i.e.

dEq = qD0

We can use D0 to perturb the endomorphism ∂E of E . Unfortunately this does
not yet make it a B-brane for (X+,W ), rather we have

(∂E +D0)2 = D2
0 = W1E − [∂E , D−1]

for some element D−1 ∈ H0(End(E)) which has homological grade -1 and R-
charge 1. Here we write [∂E ,−] to denote the supercommutator with respect to
the R-charge grading, strictly speaking this is the differential on H0(End(E))
that comes from considering (E , 0) as a B-brane on (X+, 0) rather than as a
complex of sheaves in Db(X+), but the difference is irrelevant and the signs are
more convenient this way.

If we perturb further by D−1 we get

(∂E +D0 +D−1)2 = W1E + [D0, D−1] +D2
−1

and notice that now all the unwanted terms have homological degree at most
-1. We claim we can iterate this process, and since the homological degree is
bounded it will terminate. Indeed, we wish to solve

(∂E +D)2 = W1E

where
D = D0 +D−1 +D−2 + ...

is a series of terms of decreasing homological grade and R-charge 1. The piece
of this equation in homological grade −k < 0 is

[∂E , D−k−1] + (D2)−k = 0
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Assume that we have found D0, .., D−k such that this equation holds in ho-
mological grades > −k. By (3.2), H0(End(E)) has no homology in negative
degrees, so we can find D−k−1 if (D2)−k is closed. But

[∂E , (D
2)−k] = [∂E , D

2]−k+1

=

−k+1∑
i=0

[[∂E , Di−1], D−k−i+1]

=

−k+1∑
i=0

[(D2)i, D−k−i+1]

= [D2, D]−k+1

= 0

so inducting on k our solution D exists. We let

dE = ∂E +D

so (E , dE) is a B-brane on (X+,W ). It remains to show that it is homotopic to
the brane (E, dE). To see this we consider the dga

EndBr(X+,W )((E, dE)⊕ (E , dE)) = Γ(End(E ⊕ E)⊗A0,•)

This carries its usual grading (the sum of R-charge and Dolbeaut grade) and
also the homological grading from E . Its differential is a sum of terms induced
from dE , ∂̄, ∂E and the D−k, these have homological grading 0, 0, 1 and −k
respectively. Thus we can filter this dga by defining

F pEndBr(X+,W )((E, dE)⊕ (E , dE))

to be the sum of the bi-graded pieces that have

(usual grade)− (homological grade) ≥ p

then this filtration is compatible with the differential and the algbra structure.
Also the filtration is bounded, in the sense that the induced filtration on any
(usual) graded subspace is bounded. This is a sufficient condition for the asso-
ciated spectral sequence of dgas to converge [10]. To get page 1 of this spectral
sequence we take the homology of the term of the differential which has bi-degree
(1, 1), this is the term induced from ∂E . The diffential on page 1 is induced from
dE , ∂̄ and D0, and D0 was chosen so that it induced dE on ∂E -homology. So
page 1 is

Γ(End(E ⊕ E)⊗A0,•) = EndBr(X+,W )((E, dE)⊕ (E, dE))

This is concentrated in homological grade zero, so the spectral sequence collapses
at page 2. We deduce that in the homotopy category the objects (E , dE) and
(E, dE) are isomorphic.
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3.2 Spherical B-branes

We use the same set-up as in the previous subsection, but from now on we
assume that C∗G has no zero eigenvalues in V , so

V = Vx ⊕ Vy
are the positive and negative C∗G-eigenspaces.

The zero section gives an inclusion

PVx ↪→ X+

and there is an associated sky-scraper sheaf OPVx
. This is a spherical object

in the derived category Db(X+). We are going to modify it so as to produce a
spherical object in the category of B-branes Br(X+,W ).

Under our definition a B-brane is a vector bundle, so it is supported over the
whole of X+ (it is ‘space-filling’). However a better definition should allow
arbitrary coherent sheaves, which in particular can be supported just on sub-
schemes. Then no modification of OPVx would be necessary, we could just equip
it with the zero endomorphism, which does indeed square to W because W ≡ 0
along the zero section.

We have not attempted to develop such a definition because the presence of local
Ext groups makes defining the morphisms between such objects significantly
more difficult. Instead we shall resolve OPVx by vector bundles, and deform the
resolution. Nevertheless the resulting object does behave as if it was supported
just on the zero section (Prop. 3.8).

Let {∂yi} ,
{
dyi
}

be dual bases of Vy and V ∨y , and yi the corresponding co-
ordinates. Consider the Koszul resolution of OPVx :

(∧•V ∨y ,¬Σiyi∂yi)
∼−→ OPVx

We will deform the differential to make it a B-brane on (X+,W ), and show that
it is still spherical.

Write W as
W =

∑
i

yifi (3.3)

This is possible sinceW is gauge invariant, and has R-charge 2 so has no constant
term. We define a B-brane on (X+,W ) by the C∗R-equivariant vector bundle

S := ∧•(V ∨y [1])

and the endomorphism

dS :=
∑
i

¬yi∂yi + ∧fidyi
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It is easy to check that d2
S = W1S .

Proposition 3.7. The B-brane (S, dS) is independent, up to isomorphism, of
the choice of splitting (3.3)

Proof. Let W =
∑
i yif̂i be another choice of splitting, and d̂S the corresponding

endmorphism of S. It is sufficient to prove the lemma in the case that fi = f̂i
for i > 2. In that case we have

f̂1 = f1 + y2g

f̂2 = f2 − y1g

for some g. We have inverse isomorphisms

1S + ∧(gdy1 ∧ dy2) : (S, dS)→ (S, d̂S)

1S − ∧(gdy1 ∧ dy2) : (S, d̂S)→ (S, dS)

and it is easy to check that these are closed.

Let ζ : PVx ↪→ X+ denote the zero section.

Proposition 3.8. For any B-brane (E, dE) on (X+,W ), the homology of

HomBr(X+,W )((E, dE), (S, dS))

can be computed from a spectral sequence whose first page is

H•PVx
(ζ∗E∨)

with the differential induced from dE.

Note that since W = 0 on the zero section, dE does indeed induce a differential
on H•PVx

(ζ∗E∨).

Proof. The bundle S, as well as being C∗R-equivariant, is graded by the powers
in the exterior algebra. Let’s call this the exterior grading, and write

dS = ∂S +DS

for the terms of exterior grade -1 and +1 (∂S is the usual Koszul differential).
Consider

HomBr(X+,W )((E, dE), (S, dS)) = Γ(Hom(E,S)⊗A0,•)

This carries its usual grading which is the sum of R-charge and the Dolbeaut
grading, and also an exterior grading induced from the grading on S. The
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differential has terms induced from ∂S , DS , dE and ∂̄ having bi-degrees (1,−1),
(1, 1), (1, 0) and (1, 0) respectively. We now proceed by a similar argument to
the one used at the end of Lemma 3.6. Define a filtration by letting

F pHomBr(X+,W )((E, dE), (S, dS)) ⊂ HomBr(X+,W )((E, dE), (S, dS))

be the direct sum of the bi-graded pieces whose total degree is ≥ p, then the
differential preserves this filtration, and is bounded for any fixed total of the
Dolbeaut grade and R-charge. Page 1 of the associated spectral sequence is
given by taking the homology of the term induced from ∂S only, so it is

Γ(Hom(E,OPVx
)⊗A0,•) ∼= RΓPVx

(ζ∗E∨)

with differential induced from dE and ∂̄. This is concentrated in exterior grade
zero, so this spectral sequence collapses after this page.

To compute page 2, we can use a second spectral sequence (essentially the one
from Remark 2.14) by remembering that the complex on page 1 is actually a
bi-complex under the Dolbeaut grading and R-charge.

Corollary 3.9. (S, dS) is either a spherical object or zero in H0(Br(X+,W )).

Proof. By Corollary 3.2

H•PVx
(ζ∗S∨) = H•PVx

(O)⊕H•PVx
(O(−d))

= C⊕ C

where the second copy of C has some bi-degree depending on the dimensions
and R-charges of Vx and Vy. Either the spectral sequence collapses at this point
(which it usually will for degree reasons) and (S, dS) is spherical, or it converges
to 0 and (S, dS) is contractible.

Example 3.10. (Flop with superpotential) Let V = C4 with C∗G weights 1,1,-1,-1,
so both GIT quotients are isomorphic to O(−1)⊕2

P1 . Let W = x1y1 + x2y2 (and
pick any compatible C∗R action). We can take (S, dS) to be

O(2)
(y2,−y1) //

O(1)⊕2

(x2,−x1)
oo

(y1,y2) //
O

(x1,x2)
oo

so
HomBr(X+,W )((S, dS), (S, dS)) ∼= RΓP1(ζ∗S∨) ∼= 0

and so (S, dS) is contractible. In fact one would expect the whole category
Br(X+,W ) in this example to be zero by Knörrer periodicity.
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3.3 Spherical twists

We continue with the same class of examples as in the previous subsection. We
have shown in Theorem 3.3 that for each t ∈ Z we have quasi-equivalences

Br(X+,W )
ι∗+←− Gt

ι∗−−→ Br(X−,W )

On the homotopy categories these can be inverted, so we have Z-many equiva-
lences

Φt : H0(Br(X+,W ))
∼−→ H0(Br(X−,W ))

passing through the categories H0(Gt), and hence we have autoequivalences
Φ−1
t+1Φt of Br(X+,W ). The statement that we would like to be able to make is

that Φ−1
t+1Φt is an inverse spherical twist around the spherical object (S(t), dS),

in the sense of [15]. Unfortunately such a statement would require a proper
theory of Fourier-Mukai transforms for Landau-Ginzburg B-models, and we have
not developed such a theory. Instead we’re going to settle for a less clean
statement, which we prove below (Theorem 3.13).

Recall that an inverse spherical twist on a space X is an auto-equivalence of the
derived category Db(X) that sends an object E to the cone on the natural map

[E −→ RHomX(E , S)∨ ⊗ S]

where S is a fixed spherical object in Db(X). We have shown (Cor. 3.9) that
we have an object (S, dS) ∈ Br(X+,W ) that is either spherical or zero, we can
twist it by O(t) to get other B-branes S(t) that are either spherical or zero.
What we’re going to do is construct, for any B-brane (E, dE) ∈ Br(X+,W ), a
suitable map

εE : E → H∨ ⊗ S(t)

where H is a complex such that

H ' HomBr(X+,W )(E,S(t))

and then show that Φ−1
t+1Φt sends E to the cone on εE . If S(t) is spherical, this

is a good approximation to showing that Φ−1
t+1Φt is a spherical twist (at least

on objects). If S(t) is zero, it shows that Φ−1
t+1Φt is the identity (at least on

objects).

We begin with another Corollary of Proposition 3.8.

Lemma 3.11. Let (E, dE) ∈ ι∗+Gt. Then

HomBr(X+,W )((E, dE), (S(t), dS)) ∼= (H0
PVx

(ζ∗E∨(t), d∨E)

23



Proof.
HomBr(X+,W )(E,S(t)) = HomBr(X+,W )(E(−t), S)

which by Prop. 3.8 can be computed from H•PVx
(ζ∗E∨(t)). But E is a direct

sum of line bundles O(k) with t ≤ k < t+ d, so by Lemma 3.1,

H•PVx
(ζ∗E∨(t)) = H0

PVx
(ζ∗E∨(t)) = C⊕mE

where mE is the number of copies of O(t) appearing in E, and the spectral
sequence collapses.

Pick an (E, dE) ∈ ι∗+Gt. For notational convenience let us define

H := (H0
PVx

(ζ∗E∨(t)), d∨E)

If we were in the special case when W = 0 and we had chosen dE = 0 then there
would be a canonical map (the unit of the adjunction)

ε0 : E → H∨ ⊗ S(t)

This map just projects E onto its O(t)⊕mE summand and then includes this as
the final term of H∨ ⊗ S(t).

When dE 6= 0 the map ε0 is not closed, so we cannot take its mapping cone. We
can fudge this using the following:

Lemma 3.12. There is a closed map of R-charge 0

εE = ε0 + ε1 + ... : E → H∨ ⊗ S(t)

where εi has exterior grade i.

Recall that the ‘exterior grade’ refers to the grading on S that comes from its
underlying vector bundle being an exterior algebra.

Proof. We use the iterative technique from Lemma 3.6. Consider the complex

HomX+(E,H∨ ⊗ S(t))

This is bigraded by R-charge and exterior grade, and carries a differential d
composed of terms

d = d−1 + d0 + d1

of exterior grade -1, 0, and 1. The term d−1 just comes from the Koszul differ-
ential ∂S on S. If we just take d−1 homology, the complex is acyclic except in
exterior grade 0, where it is

HomPVx(O(t)⊕mE ,O(t)⊕mE )
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We want to solve dεE = 0, which in exterior grade k is

d−1εk+1 = −d0εk − d1εk−1

Suppose we have solved this for all exterior grades ≤ k. Then

d−1(−d0εk − d1εk−1) = d0d−1εk + d1d−1εk−1 + d2
0εk−1

= −d0(d0εk−1 + d1εk−2)− d1(d0εk−2 + d1εk−3) + d2
0εk−1

= 0

If k ≥ 1 then by acyclicity an εk+1 exists. To check that an ε1 exists we
need to check that d0ε0 is zero in d−1-homology, which means calculating the
component of it that maps O(t)⊕mE ⊂ E to O(t)⊕mE ⊂ H∨ ⊗ S(t). But this
is zero, because the differential on H∨ cancels the component of dE that maps
O(t)⊕mE to itself.

Write (CE , dC) for the mapping cone of εE .

Theorem 3.13. For any (E, dE) ∈ ι∗+Gt,

Φ−1
t+1 ◦ Φt([(E, dE)]) ' [(CE , dC)]

in the homotopy category of Br(X+,W ).

Proof. Calculating Φt([(E, dE)] is easy since (E, dE) ∈ ι∗+Gt, it is given by ex-

actly the same data as (E, dE) but considered as a brane on X−. To apply Φ−1
t+1

to it we have to replace it with a homotopy equivalent brane that lies in ι∗−Gt+1,
which we know we can do by Lemma 3.6. In fact we can do this fairly explicitly:
split E into its factors

E = O(t)⊕mE ⊕ E′

where E′ is a direct sum of line bundles from {O(t+ 1), ...,O(t+ d− 1)}, then
we can resolve E (recall Lemma 3.5) by the complex

(E , ∂E) := S̄(t)⊕mE ⊕ E′ ∼−→ E

where S̄ is the complex

(S̄, ∂S̄) := (∧≥1(V ∨y [1]),¬Σiyi∂yi)

given by truncating (S, ∂S). Now we run the algorithm of Lemma 3.6 to get a
brane (E , dE) ∈ ι∗−Gt+1, which we can then transport back to X+. This brane is
graded by the powers of the exterior algebra, as before we call this the exterior
grading.

Define an exterior grading on CE by putting E in grade zero and shifting the
exterior grading on H∨ ⊗ S(t) by 1 (as one usually would for a mapping cone).
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The differential on CE is then a sum of terms of exterior grade ≥ −1, and the
term of exterior grade -1 is just the term induced from the Koszul differential
∂S on S. Denote this term by ∂C . Then (E , ∂E) and (CE , ∂C) are branes on the
LG model (X+, 0), and they are clearly homotopy equivalent. Indeed, (CE , ∂C)
is

[O(t)⊕mE ⊕ E′ (j⊕mE ,0)−→ (S(t)⊕mE , ∂S)]

where j : O → S is the inclusion of O = ∧0V ∨y ↪→ S, and the cone on j is

clearly homotopy equivalent to (S̄, ∂S̄). This means we have maps

CEh1 44

f0
** E

g0

kk ĥ1

yy

forming a homotopy equivalence (with respect to ∂C and ∂E), where f0 and

g0 have both R-charge and exterior grade 0 and h1 and ĥ1 have R-charge -
1 and exterior grade 1. We claim we can use our iterative trick once again to
perturb these maps by terms of increasing exterior grade until we get a homotopy
equivalence between (CE , dC) and (E , dE). The argument is much the same as
before: firstly observe that

RHomX+
((CE ⊕ E , ∂C ⊕ ∂E), (CE ⊕ E , ∂C ⊕ ∂E))

has homology only in exterior grade zero, because ∂C and ∂E have homology
only in exterior grade zero. Secondly, let

F0 =

(
0 f0

g0 0

)
H1 =

(
h1 0

0 ĥ1

)
be the elements of this dga that we want to perturb, and let d = dC ⊕ dE and
∂ = ∂C ⊕ ∂E . The equations we want to solve are

[d, F ] = 0

F 2 = 1 + [d,H]

which are equivalent to
[∂, F ] = −[(d− ∂), F ]

[∂,H] = F 2 − 1− [(d− ∂), H]

and it is easy to check that if these equations hold in exterior grade ≤ k then
the right-hand-sides are closed with respect to [∂,−] so by acyclicity they can
be solved in exterior grade k + 1.
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